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Table 2. Results for the calculation of signs of Aq~n's 
for the 1000 largest E's from RFC 

%: percentage of reflections with the sign of A~o n correctly 
determined. 
ER: averaged phase error in degrees. 

Number of Method 1 
Group reflections % ER 

1 200 70.0 29 
2 400 65.0 31 
3 600 64.2 31 
4 800 60.9 34 
5 1000 56.9 38 

Method 2 Method 3 
% ~R % ER 

92.0 11 93.5 8 
82.3 20 89.5 12 
76.2 24 78.8 21 
70.0 28 72.8 24 
65.9 27 67.8 25 

example. The results of methods 2 and 3 are nearly 
the same and both are better than that of method 1. 

It is concluded from the comparison that method 
3 is the best among the three. 

The authors are indebted to Professor N. Tanaka 
and FHF is indebted to Professor T. L. Blundell for 
making available the RFC and APP data, respectively. 
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Abstract 

A structure-factor formalism for incommensurate 
modulated structures is derived. It allows for several 
simultaneous translational and rotational displace- 
ments of molecules or molecular segments, which are 
considered as being rigidly displaced. It incorporates 
treatment of several displacement waves in the crystal 
and makes full use of the four-dimensional symmetry 
description of de Wolff, Janssen & Janner [Acta Cryst. 
(1981), A37, 625-636]. A computer program based 
on the formalism has been applied to existing data 
sets on phenothiazine-TCNQ [Kobayashi (1974). 
Acta Cryst. B30, 1010-1017] and biphenyl [Baudour 
& Sanquer (1983). Acta Cryst. B39, 75-89], and to a 
new data set on [bis(ethylenedithi0)-TTF]213 [Leung 
et al. (1984). J. Am. Chem. Soc. 106, 7644-7646]. 

Introduction 

It has become increasingly clear in the past years that 
modulated crystal structures are more common than 

* Permanent address: Department of Structures and Bonding, 
Institute of Physics, Czechoslovakian Academy of Science, Na 
Slovance 2, 180 40 Praha 8, Czechoslovakia. 

t Author to whom correspondence should be addressed. 

previously expected. In particular the recent interest 
in conducting organic solids has led to the discovery 
of a great many incommensurate phases of molecular 
crystals, each stable in a certain temperature domain, 
which can be described with formalisms developed 
for application to minerals, alloys and other inorganic 
solids. In many cases the transition to the modulated 
structure corresponds to a change from a metallic to 
an insulating state (i.e. a Peierls transition), in others 
the transport properties are much less affected. In all 
cases a knowledge of the geometry of the distortion 
IS tmportant for the understanding of the mechanism 
of the transition and the transport properties in the 
modulated state. Intermolecular distances and 
molecular overlap, for example, may show large local 
variations from the average over the whole crystal. 

Scattering formalisms for modulated structures 
have been discussed by Overhauser (1971), de Wolff 
(1974), Axe (1980) and Yamamoto (Yamamoto, 
Nakazawa & Tokonami, 1979). They take into 
account substitutional or displacive modulations of 
each of the atoms in the crystal. In molecular cystals, 
however, a translational or rotational displacement 
of a molecule, or one of its segments, is more likely 
because of the stiffness of the intramolecular linkages 
between atoms. Such a rigid body displacement analy- 
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sis is related to the well known treatments of thermal 
motion in crystal structure analysis. It has been 
applied to the molecular crystals of phenothiazine- 
7,7,8,8-tetracyano-p-quinodimethane (PTZ-TCNQ) 
by Kobayashi (1974) and to the low-temperature 
phase III of diphenyl by Baudour & Sanquer (1983). 
In both cases the phase of the molecular displacement 
was referred to the origin of the unit cell. This choice 
is adequate when the number of molecules in the cell 
is limited to one per chain, but not sufficiently general 
when the cell contains more molecules, or several 
non-symmetry-related chains. We discuss here a more 
general formalism in which the phase reference point 
can be anywhere in the unit cell, such as at the 
molecule's center of mass. The formalism allows for 
several simultaneous translational and rotational dis- 
placements of the rigidly displaced body, and 
includes the possibility of several coexisting waves in 
different parts of the crystal. This latter feature is of 
particular importance for organic salts, in which 
cation and anion displacements will in general be 
different. Full use is made of the four-dimensional 
symmetry description of one-dimensionally modu- 
lated structures developed by de Wolff, Janssen & 
Janner (1981). In its present form our algorithm is 
valid within the harmonic approximation; an 
extension to include higher harmonic terms will be 
considered in future work. 

Scattering formalism 

Let us consider a displacively modulated crystal in 
which the vth atom in the unit cell defined by n is 
located at 

o r.~ = r ~ + n + u ~ { q .  (g~ +n)},  (1) 

where r ° is the average position of atom v, u~ is the 
periodic vector field u~(x) = u~(x + 1), q is the modu- 
lation vector and the vector g~ determines the phase 
reference point of the displaced entity, which may be 
chosen in several ways: 

In the atomic displacement model (e.g. de Wolff, 
1977), we have 

g = r  °, (2a) 

while in a molecular displacement model 

g,, =R,  (2b) 

where R is common to all atoms in a molecule or 
molecular segment. A convenient, but not unique, 
choice for R is the center of mass, R = ~ mir°/~ m~ 
of the rigidly displaced body. 

A third choice described by Kobayashi (1974) is 

g~ =0,  (2c) 

which implies that the displacement phases of all 
atoms in the unit cell are referred to the same point 
at the origin. 

We will assume that the displacement vector field 
u~ is a harmonic function, so that 

r.~ = r ° + n + U ~  sin {2~rq. (g~ + n ) -  ~o~}, (3) 

where U~ and ¢,  are the displacement wave's ampli- 
tude and phase respectively. 

The contribution of the vth atom to the structure 
factor is described as 

F~(Q)=f~(Q) 2 exp {2¢riQ • ( r ° + n  ) 
n=(O,O,O) 

+ U~ sin [27rq. (g~ + n ) -  ~o~]}, (4) 

where f~(Q) is the atomic scattering factor and Q the 
scattering vector. 

With the Jacobi-Auger expansion: 

tad 

exp (iz sin a ) =  Y~ exp (-imol)J_m(z), 
--OO 

(4) becomes 

F~(Q) =f~(Q) exp (2~riQ. r °) 

X ~ J_m(27rQ.Uv) 
m ~ - - o o  

xexp ( - 2 ~ i m q .  g~) exp (im~o~) 
(N~,N2,N3) 

X Y'. exp [2-a'in. ( Q -  mq)]. (5) 
n=(O,O,O) 

For Ni >> 1 the sum over n leads to the delta function 
8 ( H - Q + m q ) ,  where H=ha*+kb*+le*. This 
means that reflections occur for Q =I-I+ mq. Main 
reflections representing the average structure have 
m = 0, while satellites are defined by m # 0. 

We shall use the assumption that the modulation 
is incommensurate, so that at least one component 
of q(q= ~a*+f lb*+ye* )  is not a rational fraction. 
In this case the satellites do not overlap and we get 

F,,(h, k, I, m) =f~(Q) exp (21riQ. r °) 

× Jm(27rQ. U~)(-1) m 

× exp (-2~imq. g~) 

x exp (im~o~). (6) 

Using (2a), (2b) and (2c) we get respectively: 

F~(h, k, l, m)=f~(Q) exp (27rill. r °) 

x J,,(2~rQ. U~) 

× ( - 1 )  m exp (im~o~) (7a) 

F~(h, k, l, m) =f~(Q) exp (27riQ. r °) 

x exp (-2~rimq. R) 

×Jm(27rQ. U~) 

× ( - 1 )  m exp (im~o~) (7b) 
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and 

F,(h, k, l, m ) = f , ( Q )  exp [27riQ. r°]Jm(27rQ. U~) 

x ( - 1 )  m exp (imp,,), (7c) 

where ~ is the phase of the phase reference point g. 
As shown by Overhauser (1971) and by Axe (1980) 

phase and amplitude fluctuations around the equi- 
librium value give rise to an additional satellite tem- 
perature factor, which has, for small phase fluctu- 
ations, the effect of replacing 

J, , , (2~Q. U,,) 

by 

Jm(2"n'Q. I1~) exp [-Iml(lml- 1)(q~)/2] 

(Axe, 1980), where ~1, is the average value of U,  
around which fluctuations occur, while U~ is the 
amplitude of the modulation wave in the hypothetical 
case in which no fluctuations would occur, and ( 2 )  
is the mean-square phase fluctuation. For cases where 
only satellites with rn = ±1 are observable the only 
effect is the replacement of U~ by ~1~. But for higher- 
order satellites a strong reduction in intensity occurs, 
which must be allowed for wherever fluctuations are 
evident. 

Treatment  of  symmetry  

Incommensurate crystals with one-dimensional 
modulation can be described as periodic arrange- 
ments in four-dimensional space (de Wolff, 1974; de 
Wolff, Janssen & Janner, 1981). A new coordinate 
axis a4 perpendicular to the three-dimensional hyper- 
plane R3 is introduced. The real electron density p is 
in R3, the section of four-dimensional space defined 
by t (=displacement  coordinate) =0.  A four- 
dimensional symmetry operation S (:) (r) 

S = ~(r ' , t ' )=~(r , t ) ,  l r  ' 

(where ~ is the four-dimensional electron density) is 
described by 

r' = ~ r + s  

t '  = e t  + t~ - q . s .  (8) 

Here ~ and s are respectively the rotational and 
translational parts of the three-dimensional symmetry 
element, e = ±1 and 8 is a rotational and /o r  transla- 
tional part of the symmetry in the additional direction. 

Since e and 8 have to be specified for every sym- 
metry element of the four-dimensional space group 
prior to structure analysis we will briefly discuss their 
selection. 

All combinations of (~ ,  e) are restricted by the 
condition of uniqueness of the modulation vector q 

e q -  ~ q  = n* (9a) 

(de Wolff, 1977), where n* is a vector in the reciprocal 
three-dimensional lattice. This implies for example 

(a) if ~ = E (pure translation) then e = 1, 
(b) if ~ = - E  (inversion center) then e = - 1 ,  

(c) i f N  = -1  (twofold axis) then e = 1 

0 for ql12; e = -1  for q_l_2. 

This condition restricts the number of four- 
dimensional space groups to which modulated struc- 
tures can belong. Furthermore, the separation of the 
coordinates in three-dimensional space and the fourth 
coordinate t in (8) imply that every superspace group 
has to be a (3 + 1) reducible group. For every space- 
group element there exists a smallest finite number n 
for which S n is equal to some translational element 
of the superspace group. Because of the (3 + 1) reduci- 
bility this means that 

~ "  = E, e" = 1 and 8 + e 8 + . . . + e n - 1 8  =integer.  
(9b) 

Possible ~ values for e = 1 are therefore limited to 
±j/n ,  where j = 0, 1 , . . . ,  n - 1), while for superspace 
group elements with e = - 1  no limitation exists. For 
e = + 1 the values of 8 are specified in the superspace 
group symbol, for e = - 1 we use the following method 
to find & 

Let G + and G -  be the subsets of symmetry ele- 
ments of superspace group G with e = + 1 and e = -1  
respectively. Every Sj-~ G -  can be written as 

S-j= S~. So, (10) 

where So is one element in G-  for which we can set 
8 -- 0 because of the particular choice of origin along 
the distortion coordinate t. This freedom can also be 
understood as the possibility of choosing the origin 
(i.e. the 'first' cell) in the three-dimensional modu- 
lated crystal. This means that 8 ( S j -  ) can be derived 
by use of (10) combined with (8). 

It is useful to define a new value ~-, the intrinsic 
rational increment in t, as: 

~'= 8 - q , . s  (11) 

(de Wolff, Janssen & Janner, 1981), where qr is the 
rational part of the modulation vector. All restrictions 
for t are related to restrictions in 6. 

In order to sum over all atoms related by the 
four-dimensional symmetry operations we must 
express the displacement u~ of the atom generated 
by Sj to that of the 'source' atom u~. From de Wolff 
et al. (1981, expression 3.16) we have: 

u{(q. g{)=  ~Ju,{e~(q. g{-8~ + m*.  g~)}, (12a) 

where m* is a reciprocal-lattice vector equal to e j q -  
~ - l q  (9), and g{ is the phase reference point for the 
atom generated by Sj. 
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Substitution of this expression in (12a) leads to 

u{(q.g{)= ~Ju,,{q.g~+ ej(q.sj-61)}, (12b) 

which is more suitable for computational purposes. 
The structure-factor expression (4) becomes, after 

summation over all symmetry-related atoms Ns, 

F,,(Q) = E f , (Q)  
j = l  

(2%,N~,Np 
X X exp (2~'iQ. (r{, +n) 

n=(O,O,O) 

+ ~ J U  sin {2¢rq. g~ 

+ 2qr[ejq.n+ ej(q.sj-6;)]-cP,,}) (13) 

or after summation over all unit cells: 

F~(Q) = • f i (Q)  exp (2~riQ. rJ~) 
j = l  

XJm(2¢rQ. UJ)(-ej) m 

x exp (-2,a'imejq. g~) 

xexp {im[2w(#j - q. sj) + e/p~]}. (14) 

For the structure-factor expression (4) only the 
projection Q.  u~ is needed. From (16) we have: 

(Q.  u~) = (Q.  UX~) sin (2¢rq. g~) 

- ( Q .  U y) cos (2wq. g~). (17) 

Introducing U~ and Xv such that 

Uv={(Q.UX)2+(Q.Uy)2} 1/2 (18) 

sin X~ = Q.  U~/U~, cos x~ = Q- UY/U~, 

we get 

Q .  u~ = u~ sin (2¢rq. g~-x~),  (19) 

which is particularly convenient for calculational pur- 
poses. In expression (4), Q .  U~ and q~ are replaced 
by U~ and X~ respectively. This method represents a 
considerable simplification compared with 
expressions containing products of Bessel functions. 
It can be understood as a projection of the combina- 
tion of waves with the same wavelength leading to a 
simple sine wave. 

For symmetry-related atoms U~ and U~ in (18) are 
replaced by ~ U  x and ~ U  y before substitution into 
(14). 

Combination of several displacement waves 

In many modulated structures encountered in prac- 
tice several modulation waves with the same q are 
superimposed. In the molecular case these may be 
rotational in addition to transverse and longitudinal 
displacements. It is possible to incorporate the separ- 
ate waves into a structure-factor formalism. Such a 
treatment, however, leads to an expression with prod- 
ucts of Bessel functions, which becomes particularly 
cumbersome in the case of more than two contributing 
vector fields. 

Let us have n modulation sine waves for some atom 
in the structure: 

u~= ~ U~, s in (2~rq .g~-¢ , ) ,  (15) 
i=1 

where U~i, q~i are the amplitude and the phase of the 
ith wave respectively. This equation can be rewritten 
a s  

u~ = UX~ sin (2wq. g~) -U~ cos (2wq. g~) (16) 

with UX = Y.i u~i cos ~0~ and UY =Y~i u~ sin ~o~. 
This means that the ( 3 + 1 ) x n  (i.e. u,,~, ~p~, i= 

1 , . . . ,  n) parameters of (15) have been reduced to 
six parameters (i.e. components of UX~ and UY). 

We note that (16) is in full agreement with equation 
(1.1) of McConnell & Heine (1984), which states that 
incommensurate structures can always be expressed 
in the form of two different components, one modu- 
lated with cos q. r and the other with sin q. r. 

Molecular displacement model 

The molecular displacement model defined by (2b) 
assumes a molecule (or part of a molecule) to be 
displaced as a rigid unit. In other words, the soft 
modes that lead to a modulation of the structure 
below the transition point are assumed to be low- 
frequency phonon modes. The number of parameters 
in this model is small and limited to translational and 
librational displacement coordinates. For all atoms 
in the rigid body 

u~ =ut{q. (R+n)} (20) 

for translations, and 

u~ = u'{q. (R+n)} x ( rv -R)  (21) 

for rotations within a rectilinear approximation, 
where u" is a rotational displacive vector field, which 
defines the direction and magnitude of the rotation. 
In the harmonic approximation the functions u ' and 
u t are again harmonic functions defined by an ampli- 
tude and phase for every molecular displacement 
field. 

Computer program 

A least-squares program JANA has been written using 
(14) with the rigid-body approximations (20) and (21) 
and the combination of waves defined by (16) and 
(19). The program is based on the general routine 
LINEX77 and allows simultaneous refinement of 
atomic positional and thermal parameters, and 
extinction parameters, in addition to the displacement 



482 DISPLACIVELY MODULATED MOLECULAR CRYSTALS 

coordinates. Thus, although the rigid-body displace- 
ment assumption is used, the geometry of each 
molecule is fully adjustable. 

The input to the program requires specification of 
the four-dimensional superspace group, including e 
and ~ values for each of the symmetry elements. Since 
many molecular crystals of interest have two or more 
molecular components, up to eight rigidly displaced 
bodies can be specified. This feature also allows sep- 
arate treatment of more flexible parts of a molecule 
if desirable. 

Table 1. Modulation waves for biphenyl 

T o p  line: f r o m  B a u d o u r  & S a n q u e r  (1983);  b o t t o m  line: this s tudy .  

A m p l i t u d e  

Torsion around L* 11.0 (2) ° 9°~t 
11.2 (2) ° 12 (3) ° 

Libration around N f  1.0 (1)° 99°~ 
1.0 (1) ° 94(11) ° 

Translation along L* 0-035 (5) .A 9°~ 
0.032 (4) A 19 (28) ° 

* L = long molecular axis. 
5" N = normal to mean molecular plane. 
* Not refined. 

Application 
The algorithms described above have been applied 
to three modulated structures. They range from 
phenothiazine-7,7,8,8-tetracyano-p-quinodimethane 
(PTZ-TCNQ), in which a very large amplitude modu- 
lation is induced by hydrogen-bonding requirements 
(Kobayashi, 1974), and the 20 K phase of biphenyl 
in which the central-bond torsion angle varies along 
the modulation wave (Baudour & Sanquer, 1983), to 
the ambient pressure low-temperature superconduc- 
tor [bis(ethylenedithio)-tetrathiafulvalene]2triodide 
[(BEDT-TTF)213], in which two separate waves with 
the same q are found in the organic and iodine com- 
ponents (Leung et al., 1984). The first two data sets 
were obtained from the literature, while the (BEDT- 
TTF)213 data were as measured by Leung et al. Each 
case is discussed below. 

PTZ- TCNQ 

The 1:1 complex of phenothiazine and 7,7,8,8- 
tetracyano-p-quinodimethane shows large transverse 
displacements of about 0.8 A relative to the average 
structure (Kobayashi, 1974). On the basis of the 
modulation vector q = 0.232 b*, the absence of satel- 
lites of 0k0 reflections and the space group of the 
average structure, the space group pC~/~, was selected 
for our analysis. Satellites of first, second and third 
order were observed by Kobayashi in his photo- 
graphic data. However, his analysis does not give 
evidence for an extra satellite temperature factor, 
which suggests that fluctuations around the average 
modulation are small in this case. This may be under- 
stood in terms of the relative rigidity of the hydrogen 
bond, compared with other intermolecular interac- 
tions. 

Refined fractional components of the displacement 
amplitude are [-0.1172 (10), 0, 0.0708 (8)], in good 
agreement with previous values (-0.121,0,0.0714) 
estimated from the zero intensity of main reflections 
and the zero point of the Bessel function Jo(x). The 
final R(F)  factor is 0.191 compared with values of 
0.195, 0.200 and 0.178 obtained in the earlier analysis, 
in which the structure was refined in an enlarged 
'pseudo-commensurate' cell with a larger number of 
independent atoms than used in the present treatment. 

Introduction of rotational modulations, phase 
parameters and independent displacements of the 
PTZ and TCNQ molecules did not lead to significant 
improvements between the observed and calculated 
structure factors. 

Biphenyl, 20 K 

The modulated structure of the 20 K phase of 
biphenyl was analyzed with a set of neutron diffrac- 
tion data by Baudour & Sanquer (1983) in the super- 
space group PP~. The main modulation is a torsion 
of the central C-C bond of the molecule, but, in 
addition Baudour & Sanquer found evidence for a 
librational and translational molecular displacement. 

The structure is of particular interest for testing 
purposes because of the coexistence of these three 
types of displacement waves (with the same q=  
0.46 b*). Baudour & Sanquer did not refine the rela- 
tive phases; these were adjusted separately until a 
minimum of R was found. The same treatment was 
used for the phase difference between the waves in 
the two symmetry-related columns. 

In our treatment all phases were refined in the 
least-squares procedure, while the relative phase of 
the glide-plane-related columns depends only on the 
symmetry operation, through (12b). The possibility 
to adjust the phases of every modulation wave is 
specific for space groups including elements with 
e = - l ;  if only e = + l  elements occur one of the 
phases can arbitrarily be chosen as zero. The choice 
of phase difference between the two columns by 
Baudour & Sanquer can be shown to be equivalent 
to the refinement of all three (rather than two) phases 
in our treatment. 

Results are compared in Table 1. The results agree 
with those reported earlier within the standard devi- 
ations of the least-squares values. R(F)  factors for 
main and satellite reflections are 0.088 (0.088) and 
0.176 (0.175) respectively, where the bracketed values 
are as published by Baudour & Sanquer. 

(BEDT- TTF)313 (ET213) 

The 2:1 salt of BEDT-TTF [bis(ethylenedithio)- 
tetrathiafulvalene] and I~ shows ambient-pressure 
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Table 2. Modulation parameters in ( B E D T -  TTF)213 

Refinement 1, rigid-body translations only 

Magni- x y z ~b(°) 
tude (,~) 

13 0.281 (1) 0.0428 (2) 0.0008 (2) -0.022 (1) 0 
ET 0.124 (3) 0.0151 (3) -0.0047 (3) 0.0022(1) 13.8 (9) 

Refinement 2, non-rigid iodide ion, both translations and rotations 
for ET, using combinat ion of waves expression (19) 

Translations (in fractions of  the unit cell edge) 

11" 

Magnitude 

I2" 

Magnitude 

ETI" 

Magnitude 

Rotation 
ETt 

U x U y 

0.0392 (2) 
0.0009 (2) 

-0.0039 (2) 

0.271 ~k 

0.0431 (2) 0.0030 (2) 
0.0022 (1) -0.0076 (2) 

-0.0003 (1) -0.0030 (2) 

0.277/~ 0.088/~ 

0.0143 (2) 0.0017 (2) 
-0.0042 (1) -0.0021 (1) 
-0.0013 0.0021 (1) 

0.113 ,g, 0.041/~, 

0.00232 (6) 
0.00172 (5) 

-0.00067 (5) 

Magnitude 1.24 ° 

* ~ = 0 at the origin of the cell, which is the position of the central iodine 
atom. 
i" tp = 0 at ET molecular center. 

superconductivity at temperatures 0-3-3 K higher 
than those observed in other organic conductors 
(Yagubski et al., 1984; Leung et al., 1984). When the 
crystals are cooled below 200 K strong first-order 
satellite reflections occur with a q vector of 0.08 a* + 
0.27b* + 0.205e* at 125 K and superspace group pV~ 
Initial refinements were done on 3346 main reflections 
with I > 3 c r ( I )  and 1041 strong satellite reflections 
with I >  25cr(I). 

In a first model one translational wave of variable 
amplitude U~ was introduced for each of the 
molecular species 13 and ET. This treatment led to 
R ( F )  = 0.036 and 0-163 for the two sets of reflections 
respectively, and showed large modulations of 
1311U~I = 0-281 (1) A] directed along a and ET[I U~I = 
0.124 (3) A] directed almost exactly along one of the 
inertial axes in the average plane of the ET 
(molecule). 

Since the R factor on the satellite intensities is 
higher than expected from the estimated accuracy of 

the intensities, the constraints of the model were 
relaxed by: (1) introducing separate motion of the 
two independent atoms in 13; (2) using both sine and 
cosine terms as in (17) for the terminal I atom (the 
phase of the central I atom is fixed by the center of 
symmetry) and the ET molecule; and (3) introducing 
rotational displacements for ET. 

R (F) factors for this refinement are 0.034 and 0.098 
for main reflections and strong satellites respectively, 
a considerable improvement over the restricted 
model. A final refinement included 3209 satellite 
reflections with I >  3o,(1) and gave an R factor of 
0.076 for all reflections. 

The results summarized in Table 2 show a sig- 
nificant deviation from pure translational displace- 
ment for I3, which is in part rotational, and in part 
due to internal distortions. The magnitudes of the 
displacement amplitudes are, however, little affected. 
For ET the magnitude of the translational displace- 
ment is again similar, though the cosine and sine 
components differ in magnitude and direction. In 
addition a small but significant rotational displace- 
ment with amplitude equal to 1.24 ° is observed. 

A more detailed description of these results will be 
given in a separate publication. 
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